Образовательный портал - Kurokt

Каково направление импульса тела. Импульс тела. Импульс силы. График F(t). Переменная сила

Рассмотрим изменение импульсов тел при их взаимодействии друг с другом.

Если два или несколько тел взаимодействуют только между собой (то есть не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.

Импульс, равный векторной сумме импульсов тел, входящих в замкнутую систему, называется суммарным импульсом этой системы.

Таким образом, чтобы найти суммарный импульс замкнутой системы n тел, необходимо найти векторную сумму импульсов всех тел, входящих в данную систему:

p сум → = p 1 → + p 2 → + ... + p n → .

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.

Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

В этом заключается закон сохранения импульса, который называют также законом сохранения количества движения.

Закон сохранения импульса впервые был сформулирован Р. Декартом. В одном из своих писем он написал:

«Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает».

Рассмотрим систему, состоящую только из двух тел - шаров массами m 1 и m 2 , которые движутся прямолинейно навстречу друг другу со скоростями v 1 и v 2 . Шары обладают импульсами p 1 → = m 1 v 1 → и p 2 → = m 2 v 2 → соответственно.

Через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени \(t\) , возникнут силы взаимодействия F 1 → и F 2 → , приложенные соответственно к первому и второму шару. В результате действия этих сил скорости шаров изменятся. Обозначим скорости шаров после соударения v 1 ′ и v 2 ′ . И импульсы шаров станут p 1 → ′ = m 1 v 1 → ′ и p 2 → ′ = m 2 v 2 → ′ соответственно.

Тогда, согласно закону сохранения импульса, имеют место равенства:

p 1 → + p 2 → = p 1 → ′ + p 2 → ′

m 1 v 1 → + m 2 v 2 → = m 1 v 1 → ′ + m 2 v 2 → ′ .

Данные равенства являются математической записью закона сохранения импульса.

Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю.

Таким образом, более точно закон сохранения импульса формулируется так:

векторная сумма импульсов всех тел замкнутой системы - величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Пример:

При стрельбе из пушки возникает отдача: снаряд летит вперёд, а само орудие откатывается назад. Почему?

Снаряд и пушка - замкнутая система, в которой действует закон сохранения импульса. В результате выстрела из пушки импульс самой пушки и импульс снаряда изменятся. Но сумма импульсов пушки и находящегося в ней снаряда до выстрела останется равной сумме импульсов откатывающейся пушки и летящего снаряда после выстрела.

Обрати внимание!

В природе замкнутых систем не существует. Но если время действия внешних сил очень мало, например, во время взрыва, выстрела и т.п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Великий учёный Исаак Ньютон изобрёл наглядную демонстрацию закона сохранения импульса - маятник, или её ещё называют «колыбель». Это устройство представляет собой конструкцию из пяти одинаковых металлических шаров, каждый из которых крепится с помощью двух тросов к каркасу, а тот в свою очередь - к прочному основанию П-образной формы.

ИМПУЛЬС ТЕЛА

Импульс тела - это физическая векторная величина, равная произведению массы тела на его скорость.

Вектор импульса тела направлен так же как и вектор скорости этого тела.

Под импульсом системы тел понимают сумму импульсов всех тел этой системы: ∑p=p 1 +p 2 +... . Закон сохранения импульса: в замкнутой системе тел при любых процессах ее импульс остается неизменным, т.е. ∑p = const.

(Замкнутой называется система тел, взаимодействующих только друг с другом и не взаимодействующих с другими телами.)

Вопрос2. Термодинамическое и статистическое определение энтропии. Второе начало термодинамики.

Термодинамическое определение энтропии

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общегоколичества тепла к величинеабсолютной температуры :

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

где - приращение (дифференциал) энтропии, а- бесконечно малое приращение количества теплоты.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Статистическое определение энтропии: принцип Больцмана

В 1877 году Людвиг Больцман нашёл, что энтропия системы может относиться к количеству возможных «микросостояний» (микроскопических состояний), согласующихся с их термодинамическими свойствами. Рассмотрим, например, идеальный газ в сосуде. Микросостояние определено как позиции и импульсы (моменты движения) каждого составляющего систему атома. Связность предъявляет к нам требования рассматривать только те микросостояния, для которых: (I) месторасположения всех частей расположены в рамках сосуда, (II) для получения общей энергии газа кинетические энергии атомов суммируются. Больцман постулировал, что:

где константу 1,38 · 10 −23 Дж/К мы знаем теперь как постоянную Больцмана, а является числом микросостояний, которые возможны в имеющемся макроскопическом состоянии (статистический вес состояния).

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Билет 6.

  1. § 2.5. Теорема о движении центра масс

Соотношение (16) очень похоже на уравнение движения мате­риальной точки. Попробуем привести его к еще более простому виду F =ma . Для этого преобразуем левую часть, воспользовавшись свой­ствами операции дифференцирования (y+z) =­y +z , (ay) =ay , a=const:

(24)

Домножим и разделим (24) на массу всей системы и под­ставим в уравнение (16):

. (25)

Выражение, стоящее в скобках, имеет размерность длины и оп­ределяет радиус-вектор некоторой точки, которая называетсяцентром масс системы:

. (26)

В проекциях на оси координат (26) примет вид

(27)

Если (26) подставить в (25), то получим теорему о движении центра масс:

т.е. центр масс системы движется, как материальная точка, в которой сосредоточена вся масса системы, под действием суммы внешних сил, приложенных к системе. Теорема о движении центра масс утверждает, что какими бы сложными ни были силы вза­имодействия частиц системы друг с другом и с внешними телами и как бы сложно эти частицы ни двигались, всегда можно найти точку (центр масс), движение которой описывается просто. Центр масс некая геометрическая точка, положение которой определяется распре­делением масс в системе и которая может не совпадать ни с одной из ее материальных частиц.

Произведение массы системы на скорость v ц.м ее центра масс, как это следует из его определения (26), равно импульсу системы:

(29)

В частности, если сумма внешних сил равна нулю, то центр масс движется равномерно и прямолинейно или покоится.

Пример 1. В некоторой точке траектории снаряд разрывается на множество осколков (рис. 9). Как будет двигаться их центр масс?

Центр масс "полетит" по той же параболической траектории, по которой дви­гался бы неразорвавшийся снаряд: его ускорение в соот­ветствии с (28) определяется суммой всех сил тяжести, приложенных к ос­колкам, и общей их массой, т.е. тем же уравне­ни­ем, что и движение целого снаряда. Однако, как только первый оско­лок ударится о Землю, к внешним силам силам тяжести доба­вится сила реакции Земли и движение центра масс исказится.

Пример 2. На покоящееся тело начинает действовать "пара" сил F и F (рис. 10). Как будет двигаться тело?

Поскольку геометрическая сумма внешних сил равна нулю, ус­корение центра масс также равно нулю и он останется в покое. Тело будет вращаться вокруг неподвижного центра масс.

Есть ли какие-либо преимущества у закона сохранения импульса перед законами Ньютона? В чем сила этого закона?

Главное его достоинство в том, что он но­сит интегральный характер, т.е. связывает харак­теристики системы (ее импульс) в двух состоя­ниях, разделенных конечным проме­жутком вре­мени. Это позволяет получить важные сведения сразу о конечном со­стоянии системы, минуя рассмотрение всех промежуточных ее состо­яний и деталей происходящих при этом взаимодействий.

2) Скорости молекул газа имеют различные значения и направления, причем из-за огромного числа соударений, которые ежесекундно испытывает молекула, скорость ее постоянно изменяеться. Поэтому нельзя определить число молекул, которые обладают точно заданной скоростью v в данный момент времени, но можно подсчитать число молекул, скорости которых имеют значение, лежащие между некоторыми скоростями v 1 и v 2 . На основании теории вероятности Максвелл установил закономерность, по которой можно определить число молекул газа, скорости которых при данной температуре заключены в некотором интервале скоростей. Согласно распределению Максвелла, вероятное число молекул в единице объема; компоненты скоростей которых лежат в интервале от до, отдои отдо, определяются функцией распределения Максвелла

где m - масса молекулы, n - число молекул в единице объема. Отсюда следует, чтсг число молекул, абсолютные значения скоростей которых лежат в интервале от v до v + dv, имеет вид

Распределение Максвелла достигает максимума при скорости , т.е. такой скорсти, к которой близки скорости большинства молекул. Площадь заштрихованной полоски с основанием dV покажет, какая часть от общего числа молекул имеет скорости, лежащие в данном интервале. Конкретный вид функции распределения Максвелла зависит от рода газа (массы молекулы) и температуры. Давление и объем газа на распределение молекул по скоростям не влияет.

Кривая распределения Максвелла позволит найти среднюю арифметическую скорость

Таким образом,

С Повышением температуры наиболее вероятная скорость возрастает, поэтому максимум распределения молекул по скоростям сдвигается в сторону больших скоростей, а его абсолютная величина уменьшается. Следовательно, при нагревании газа доля молекул, обладающих малыми скоростями уменьшается, а доля молекул с большими скоростями увеличивается.

Распределение Больцмана

Это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц n i с полной энергией E i равно:

n i =A ω i e ­E i /Kt (1)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию E i можно считать состоящей из кинетической энергии E iкин частицы (молекулы или атома), её внутренней энергии E iвн (напр., энергии возбуждения электронов) и потенциальной энергии E i , пот во внешнем поле, зависящей от положения частицы в пространстве:

E i = E i, кин + E i, вн + E i, пот (2)

Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения

E i,вн и влиянием внешних полей E i,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. E i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различных уровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:

n 2 /n 1 = (ω 2 /ω 1) e -(E 2 -E 1)/kT (3) (ф-ла Больцмана).

Разность энергий E 2 -E 1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2 10 -9 .

Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства:

где N - число частиц, V - объём системы. Это неравенство выполняется при высокой темп-ре и малом числе частиц в ед. объёма (N/V). Из этого следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана..

билет 7.

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силыперемещенияскоростии ускорениянаправлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматриватьF , s , υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать какA = Fs . При равноускоренном движении перемещение s выражается формулой

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Это утверждение называют теоремой о кинетической энергии . Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела . Такие силы называются консервативными .

Работа консервативных сил на замкнутой траектории равна нулю . Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещенияна осьOY , направленную вертикально вверх:

Эта работа равна изменению некоторой физической величины mgh , взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Потенциальная энергия E р зависит от выбора нулевого уровня, т. е. от выбора начала координат оси OY . Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔE р = E р2 – E р1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения ). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой m на расстоянии r от центра Земли, имеет вид (см. §1.24 ):

где M – масса Земли, G – гравитационная постоянная.

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x , или сначала удлинить ее на 2x , а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A , взятой с противоположным знаком (см. §1.18 ):

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Во многих случаях удобно использовать молярную теплоемкость C:

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T 1 и T 2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T 2 – T 1 одинаково, следовательно, одинаково изменение ΔUвнутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Билет 8.

1 Конечно, положение одной, даже «особой», точки далеко не полностью описывает движение всей рассматриваемой системы тел, но все-таки лучше знать положение хотя бы одной точки, чем не знать ничего. Тем не менее рассмотрим применение законов Ньютона к описанию вращения твердого тела вокруг фиксированной оси 1 .  Начнем с простейшего случая: пусть материальная точка массы m прикреплена с помощью невесомого жесткого стержня длиной r к неподвижной оси ОО / (рис. 106).

Материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения. Безусловно, движение точки подчиняется уравнению второго закона Ньютона

Однако непосредственное применение этого уравнения не оправдано: во-первых, точка обладает одной степенью свободы, поэтому в качестве единственной координаты удобно использовать угол поворота, а не две декартовые координаты; во-вторых, на рассматриваемую систему действуют силы реакции в оси вращения, а непосредственно на материальную точку − сила натяжения стержня. Нахождение этих сил представляет собой отдельную проблему, решение которой излишне для описания вращения. Поэтому имеет смысл получить на основании законов Ньютона специальное уравнение, непосредственно описывающее вращательное движение.  Пусть в некоторый момент времени на материальную точку действует некоторая сила F , лежащая в плоскости, перпендикулярной оси вращения (рис. 107).

При кинематическом описании криволинейного движения вектор полного ускорения а удобно разложить на две составляющие − нормальную а n , направленную к оси вращения, и тангенциальную а τ , направленную параллельно вектору скорости. Значение нормального ускорения для определения закона движения нам не нужно. Конечно, это ускорение также обусловлено действующими силами, одна из которых − неизвестная сила натяжения стержня. Запишем уравнение второго закона в проекции на тангенциальное направление:

Заметим, что сила реакции стержня не входит в это уравнение, так как она направлена вдоль стержня и перпендикулярна выбранной проекции. Изменение угла поворота φ непосредственно определяется угловой скоростью

ω = Δφ/Δt ,

изменение которой, в свою очередь, описывается угловым ускорением

ε = Δω/Δt .

Угловое ускорение связано с тангенциальной составляющей ускорения соотношением

а τ = rε .

Если подставим это выражение в уравнение (1), то получим уравнение, пригодное для определения углового ускорения. Удобно ввести новую физическую величину, определяющую взаимодействие тел при их повороте. Для этого умножим обе части уравнения (1) на r :

mr 2 ε = F τ r . (2)

Рассмотрим выражение в его правой части F τ r , имеющее смысл произведения тангенциальной составляющей силы на расстояние от оси вращения до точки приложения силы. Это же произведение можно представить в несколько иной форме (рис. 108):

M = F τ r = Frcosα = Fd ,

здесь d − расстояние от оси вращения до линии действия силы, которое также называют плечом силы.  Эта физическая величина − произведение модуля силы на расстояние от линии действия силы до оси вращения (плечо силы) М = Fd − называется моментом силы. Действие силы может приводить к вращению как по часовой стрелке, так и против часовой стрелки. В соответствии с выбранным положительным направлением вращения следует определять и знак момента силы. Заметьте, что момент силы определяется той составляющей силы, которая перпендикулярна радиус-вектору точки приложения. Составляющая вектора силы, направленная вдоль отрезка, соединяющего точку приложения и ось вращения, не приводит к раскручиванию тела. Эта составляющая при закрепленной оси компенсируется силой реакции в оси, поэтому не влияет на вращение тела.  Запишем еще одно полезное выражения для момента силы. Пусть сила F приложена к точке А , декартовые координаты которой равны х , у (рис. 109).

Разложим силу F на две составляющие F х , F у , параллельные соответствующим осям координат. Момент силы F относительно оси, проходящей через начало координат, очевидно равен сумме моментов составляющих F х , F у , то есть

М = хF у − уF х .

Аналогично, тому, как нами было введено понятие вектора угловой скоро¬сти, можно определить также и понятие вектора момента силы. Модуль этого вектора соответствует данному выше определению, направлен же он перпендикулярно плоскости, содержащей вектор силы и отрезок, соединяющий точку приложения силы с осью вращения (рис. 110).

Вектор момента силы также может быть определен как векторное произведение радиус-вектора точки приложения силы на вектор силы

Заметим, что при смещении точки приложения силы вдоль линии ее действия момент силы не изменяется.  Обозначим произведение массы материальной точки на квадрат расстояния до оси вращения

mr 2 = I

(эта величина называется моментом инерции материальной точки относительно оси). С использованием этих обозначений уравнение (2) приобретает вид, формально совпадающий с уравнением второго закона Ньютона для поступательного движения:

Iε = M . (3)

Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в поступательном движении, − именно он определяет изменение угловой скорости. Оказывается (и это подтверждает наш повседневный опыт), влияние силы на скорость вращения определяет не только величина силы, но и точка его приложения. Момент инерции определяет инерционные свойства тела по отношению к вращению (говоря простым языком − показывает, легко ли раскрутить тело): чем дальше от оси вращения находится материальная точка, тем труднее привести ее во вращение.  Уравнение (3) допускает обобщение на случай вращения произвольного тела. При вращении тела вокруг фиксированной оси угловые ускорения всех точек тела одинаковы. Поэтому аналогично тому, как мы проделали при выводе уравнения Ньютона для поступательного движения тела, можно записать уравнения (3) для всех точек вращающегося тела и затем их просуммировать. В результате мы получим уравнение, внешне совпадающее с (3), в котором I − момент инерции всего тела, равный сумме моментов составляющих его материальных точек, M − сумма моментов внешних сил, действующих на тело.  Покажем, каким образом вычисляется момент инерции тела. Важно подчеркнуть, что момент инерции тела зависит не только от массы, формы и размеров тела, но и от положения и ориентации оси вращения. Формально процедура расчета сводится к разбиению тела на малые части, которые можно считать материальными точками (рис. 111),

и суммированию моментов инерции этих материальных точек, которые равны произведению массы на квадрат расстояния до оси вращения:

Для тел простой формы такие суммы давно подсчитаны, поэтому часто достаточно вспомнить (или найти в справочнике) соответствующую формулу для нужного момента инерции. В качестве примера: момент инерции кругового однородного цилиндра, массы m и радиуса R , для оси вращения, совпадающей с осью цилиндра равен:

I = (1/2)mR 2 (рис. 112).

В данном случае мы ограничиваемся рассмотрением вращения вокруг фиксированной оси, потому что описание произвольного вращательного движения тела представляет собой сложную математическую проблему, далеко выходящую за рамки курса математики средней школы. Знания же других физических законов, кроме рассматриваемых нами, это описание не требует.

2 Вну́тренняя эне́ргия тела (обозначается как E или U ) - полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Следовательно, внутренняя энергия складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии.

Внутренняя энергия тела - энергия движения и взаимодействия частиц, из которых состоит тело.

Внутренняя энергия тела - это суммарная кинетическая энергия движения молекул тела и потенциальная энергия их взаимодействия.

Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности значений в этих состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Для квазистатических процессов выполняется следующее соотношение:

1. Общие сведения Количество теплоты, которое необходимо для нагревания на 1° единицы количества газа, называется теплоемкостью и обозначается буквой с. В технических расчетах теплоемкость измеряют в килоджоулях. При использовании старой системы единиц теплоемкость выражают в килокалориях (ГОСТ 8550-61) *.В зависимости от того, в каких единицах измеряют количество газа различают: мольную теплоемкость \хс в кдж/(кмолъ х X град); массовую теплоемкость с в кдж/(кг-град); объемную теплоемкость с в кдж/(м 3 град). При определении объемной теплоемкости необходимо указывать к каким значениям температуры и давления она относится. Принято определять объемную теплоемкость при нормальных физических условиях.Теплоемкость газов, подчиняющихся законам идеального газа, зависит только от температуры.Различают среднюю и истинную теплоемкость газов. Истинная теплоемкость представляет собой отношение бесконечно малого количества подведенной теплоты Дд при увеличении температуры на бесконечно малую величину At: Средняя теплоемкость определяет среднее количество подведенной теплоты при нагревании единицы количества газа на 1° в интервале температур от t x до t%: где q - количество теплоты, подведенной к единице массы газа при его нагревании от температуры t t до температуры t%. В зависимости от характера протекания процесса, при котором происходит подвод или отвод теплоты, величина теплоемкости газа будет различной.Если газ подогревается в сосуде постоянного объема (V =» = const), то теплота расходуется только на повышение его температуры.Если газ находится в цилиндре с подвижным поршнем, то при подводе теплоты давление газа остается постоянным (р = = const). При этом, подогреваясь, газ расширяется и производит работу против внешних сил при одновременном увеличении его температуры. Для того чтобы разность между конечной и начальной температурами во время нагрева газа в процессе р = const была бы такой же, как и в случае нагрева при V = = const, количество затрачиваемой теплоты должно быть больше на величину, равную совершенной газом работы в процессе р = = const. Из этого следует, что теплоемкость газа при постоянном давлении с р будет больше теплоемкости при постоянном объеме.Второй член в уравнениях характеризует количество теплоты, затрадиваемой на работу газа в процессе р = = const при изменении температуры на 1°.При проведении приближенных расчетов можно принимать, что теплоемкость рабодего тела постоянна и не зависит от температуры. В этом слудае знадения мольных теплоемкостей при постоянном объеме можно принять для одно-, двух- и многоатомных газов соответственно равными 12,6; 20,9 и 29,3 кдж/(кмоль-град) или 3; 5 и 7 ккал/(кмоль-град).

Произведение массы тела на его скорость называют импульсом или мерой движения тела. Он относится к векторным величинам. Его направление сонаправлено вектору скорости тела.

Единица измерения в СИ:

Вспомним второй закон механики:

Для ускорения верно соотношение:

,
Где v0 и v - скорости тела в начале и конце некоторого временного отрезка Δt.
Перепишем второй закон следующим образом:

Можно увидеть, что - импульс тела в начале некоторого отрезка времени, а - импульс тела в конечный момент времени.
- альтернативная математическая запись второго закона Ньютона.
Выполним преобразование:

Величину называют импульсом силы.
А формула, которую получили, показывает, что изменение импульса тела равно по величине импульсу действующей на него силы.
Эта формула особенно интересна тем, что ей можно воспользоваться в случае, когда масса движущегося под действием силы F тела меняется в процессе движения. Примером может служить реактивное движение.

Закон сохранения импульса

В физике часто встречаются ситуации, в которых одновременно рассматривается движение взаимодействующих между собой тел, называемых системой тел.
Системой тел можно назвать солнечную систему, соударяющиеся шары, молекулы тела или система «ружьё и пуля». Те тела, которые не участвуют во взаимодействии с телами системы, называются внешними по отношению к этой системе, а силы, с которыми они действуют на систему - внешними силами.

Изолированная система тел

Если на систему не действуют внешние силы или их действие скомпенсировано, то её называют изолированной или замкнутой.
Если рассматривать движения тел в замкнутой системе, то следует учитывать силы, с которыми эти тела взаимодействуют между собой.
Если рассмотреть простейшую изолированную систему, состоящую из двух тел, массы которых m1 и m2. Тела движутся по одной прямой и их скорости совпадают по направлению, причём v1 > v2. Когда первое тело догонит второе, они начнут взаимодействовать посредством сил упругости, их скорости будут меняться, и тела начнут двигаться со скоростями. Запишем их взаимодействие с помощью третьего закона Ньютона и получим следующее соотношение:

или
.

Векторные суммы импульсов двух тел до и после удара равны между собой.
Полезной аналогией для понимания закона сохранения импульса является денежная сделка между двумя людьми. Предположим, что у двух людей до сделки была определённая сумма. У Ивана было 1000 рублей и Петр тоже обладал 1000 рублей. Общая сумма в их карманах составляет 2000 рублей. Во время сделки Иван платит Петру 500 рублей, осуществляется передача денег. У Петра в кармане теперь 1500 руб., а у Ивана - 500. Но общая сумма в их карманах не изменилась и также составляет 2000 рублей.
Полученное выражение справедливо для любого количества тел, принадлежащих изолированной системе, и является математической формулировкой закона сохранения импульса.
Суммарный импульс N-ного количества тел, образующих изолированную систему, не меняется с течением времени.
Когда система тел подвергается воздействию нескомпенсированных внешних сил (система незамкнутая), то суммарный импульс тел этой системы изменяется с течением времени. Но справедливым остаётся закон сохранения для суммы проекций импульсов этих тел на любое направление, перпендикулярное направлению результирующей внешней силы.

Движение ракеты

Движение, которое возникает при отделении от тела его части определённой массы с некоторой скоростью, называют реактивным.
Примером реактивного движения может служить движение ракеты, находящейся на значительном удалении от Солнца и планет. В этом случае ракета не испытывает гравитационного воздействия и может считаться изолированной системой.
Ракета состоит из оболочки и топлива. Они и являются взаимодействующими телами изолированной системы. В начальный момент времени скорость ракеты равна нулю. В этот момент равен нулю и импульс системы, и оболочки, и топлива. Если включить двигатель, то топливо ракеты сгорает и превращается в высокотемпературный газ, покидающий двигатель под высоким давлением и с большой скоростью.
Обозначим массу образующегося газа mг. Будем считать, что он вылетает из сопла ракеты моментально со скоростью vг. Массу и скорость оболочки обозначим соответственно mоб и vоб.
Закон сохранения импульса даёт право записать соотношение:


.Из этого равенства можем получить скорость движения оболочки:

Знак «минус» указывает на то, что скорость оболочки направлена в противоположную сторону от выбрасываемого газа.
Скорость оболочки пропорциональна скорости выброса газа и массе газа. И обратно пропорциональна массе оболочки.
Принцип реактивного движения позволяет рассчитывать перемещение ракет, самолётов и других тел в условиях, когда на них действуют внешние сила тяжести или сила сопротивления атмосферы. Конечно, в этом случае уравнение даёт завышенное значение скорости оболочки vоб. В реальных условиях и газ вытекает из ракеты не мгновенно, что влияет на итоговое значение vоб.
Действующие формулы, описывающее движение тела с реактивным двигателем получены русскими учёными И.В. Мещерским и К.Э. Циолковским.

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона ) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

И зменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY ). Пусть тело свободно падает с начальной скоростью υ 0 под действием силы тяжести; время падения равно t . Направим ось OY вертикально вниз. Импульс силы тяжести F т = mg за время t равен mgt . Этот импульс равен изменению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения . В этом примере сила оставалась неизменной по модулю на всем интервале времени t . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы F ср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt , в течение которого сила F (t ) остается практически неизменной. Импульс силы F (t ) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δt i , а затем просуммировать импульсы силы на всех интервалах Δt i , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δt i → 0) эта площадь равна площади, ограниченной графиком F (t ) и осью t . Этот метод определения импульса силы по графику F (t ) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t ) на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t 1 = 0 с до t 2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу F ср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 –3 с.

Импульс p , приобретенный мячом в результате удара есть:

Следовательно, средняя сила F ср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX ) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δp x = –2m υx . Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx < 0 и Δp x > 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2m υ.