Образовательный портал - Kurokt

Распространение плоской волны. Анализ свойств, звукоизоляции и звукопроницаемости материалов. Методы и свойства их измерения Отрывок, характеризующий Плоская волна

Для большинства задач, связанных с волнами, важно знать состояние колебаний различных точек среды в тот или иной момент времени. Состояния точек среды будут определены, если известны амплитуды и фазы их колебаний. Для поперечных волн необходимо еше знать характер поляризации. Для плоской линейно-поляризованной волны достаточно иметь выражение, позволяющее определить смещение с(х, t) из положения равновесия любой точки среды с координатой х, в любой момент времени t. Такое выражение называется уравнением волны.

Рис. 2.21.

Рассмотрим так называемую бегущую волну, т.е. волну с плоским волновым фронтом, распространяющуюся в каком-либо одном определенном направлении (например, вдоль оси х). Пусть частицы среды, непосредственно примыкающие к источнику плоских волн, совершают колебания по гармоническому закону; %(0, /) = = ЛсобсоГ (рис. 2.21). На рисунке 2.21, а через ^(0, t) обозначено смещение частиц среды, лежащих в перпендикулярной рисунку плоскости и имеющих в выбранной системе координат координату х = 0 в момент времени t. Начало отсчета времени выбрано так, чтобы начальная фаза колебаний, определенных через косинусоидальную функцию, была равна нулю. Ось х совместим с лучом, т.е. с направлением распространения колебаний. В этом случае фронт волны перпендикулярен оси х, так что частицы, лежащие в этой плоскости, будут совершать колебания в одной фазе. Сам фронт волны в данной среде перемещается вдоль оси х со скоростью и распространения волны в данной среде.

Найдем выражение?(х, t) смещения частиц среды, удаленных от источника на расстояние х. Это расстояние фронт волны проходит

за время Следовательно, колебания частиц, лежащих в плоскости, удаленной от источника на расстояние х, будут отставать по времени на величину т от колебаний частиц, непосредственно примыкающих к источнику. Эти частицы (с координатой х) также будут совершать гармонические колебания. В отсутствие затухания амплитуда А колебаний (в случае плоской волны) не будет зависеть от координаты х, т.е.

Это и есть искомое уравнение тоской бегущей волны (не путать с волновым уравнением, рассматриваемым ниже!). Уравнение, как уже отмечалось, позволяет определить смещение % частицы среды с координатой х в момент времени t. Фаза колебаний зависит

от двух переменных: от координаты х частицы и времени t. В данный фиксированный момент времени фазы колебаний различных частиц будут, вообще говоря, различны, но можно выделить такие частицы, колебания которых будут происходить в одинаковой фазе (синфазно). Можно также считать, что разность фаз колебаний этих частиц равна 2пт (где т = 1, 2, 3,...). Кратчайшее расстояние между двумя частицами бегущей волны, колеблющимися в одинаковой фазе, называется длиной волны X.

Найдем связь длины волны X с другими величинами, характеризующими распространение колебаний в среде. В соответствии с введенным определением длины волны можно написать

или после сокращений Так как , то

Это выражение позволяет дать иное определение длины волны: длина волны есть расстояние, на которое успевают распространиться колебания частиц среды за время, равное периоду колебаний.

Уравнение волны обнаруживает двойную периодичность: по координате и по времени: ^(х, t) = Z,(x + nk, t) = l,(x, t + mT) = Цх + пХ, ml), где пит - любые целые числа. Можно, например, фиксировать координаты частиц (положить х = const) и рассматривать смещение их как функцию времени. Или, наоборот, фиксировать момент времени (принять t = const) и рассматривать смещение частиц как функцию координат (мгновенное состояние смещений - мгновенная фотография волны). Так, находясь на пристани можно с помощью фотоаппарата в момент времени t сфотографировать морскую поверхность, но можно, бросив щепку в море (т.е. зафиксировав координату х), следить за ее колебаниями во времени. Оба эти случая приведены в виде графиков на рис. 2.21, а-в.

Уравнение волны (2.125) можно переписать иначе

Отношение обозначается к и называется волновым числом

Так как , то

Волновое число, таким образом, показывает, какое число длин волн укладывается в отрезке 2л единиц длины. Введя волновое число в уравнение волны, получим уравнение бегущей в положительном направлении Ох волны в наиболее часто употребляемом виде

Найдем выражение, связывающее разность фаз Дер колебаний двух частиц, принадлежащих разным волновым поверхностям Х и х 2 . Воспользовавшись уравнением волны (2.131), запишем:

Если обозначить или согласно (2.130)

Плоская бегущая волна, распространяющаяся в произвольном направлении, описывается в общем случае уравнением

где г -радиус-вектор, проведенный из начала координат к частице, лежащей на волновой поверхности; к - волновой вектор, равный по модулю волновому числу (2.130) и совпадающий по направлению с нормалью к волновой поверхности в направлении распространении волны.

Возможна также комплексная форма записи уравнения волны. Так, например, в случае плоской волны, распространяющейся вдоль оси х

а в общем случае плоской волны произвольного направления

Уравнение волны в любой из перечисленных форм записи может быть получено как решение дифференциального уравнения, называемого волновым уравнением. Если мы знаем решение этого уравнения в форме (2.128) или (2.135) - уравнение бегущей волны, то найти само волновое уравнение не составляет труда. Продифференцируем 4(х, t) = % из (2.135) дважды по координате и дважды времени и получим

выражая?, через полученные производные и сравнивая результаты, получим

Имея в виду соотношение (2.129), запишем

Это и есть волновое уравнение для одномерного случая.

В общем виде для?, = с(х, у, z, /) волновое уравнение в декартовых координатах выглядит так

или в более компактном виде:

где Д - дифференциальный оператор Лапласа

Фазовой скоростью называется скорость распространения точек волны, колеблющихся в одинаковой фазе. Иными словами - это скорость перемещения «гребня», «впадины», либо любой другой точки волны, фаза которой фиксирована. Как уже отмечалось ранее, фронт волны (а следовательно, и любая волновая поверхность) перемещается вдоль оси Ох со скоростью и. Следовательно, скорость распространения колебаний в среде совпадает со скоростью перемещения данной фазы колебаний. Поэтому скорость и, определяемую соотношением (2.129), т.е.

принято называть фазовой скоростью.

Тот же результат можно получить, найдя скорость точек среды, удовлетворяющих условию постоянства фазы со/ - fee = const. Отсюда находится зависимость координаты от времени(со/ - const) и скорость перемещения данной фазы

что совпадает с (2.142).

Плоская бегущая волна, распространяющаяся в отрицательном направлении оси Ох, описывается уравнением

Действительно, в этом случае фазовая скорость отрицательна

Фазовая скорость в данной среде может зависеть от частоты колебаний источника. Зависимость фазовой скорости от частоты называется дисперсией, а среды, в которых имеет место эта зависимость, называются диспергирующими средами. Не следует думать, однако, что выражение (2.142) и есть указанная зависимость. Дело в том, что в отсутствие дисперсии волновое число к прямо пропорционально

со и поэтому . Дисперсия имеет место лишь в том случае, когда со зависит от к нелинейно).

Бегущая плоская волна называется монохроматической (имеющей одну частоту), если колебания в источнике гармонические. Монохроматическим волнам отвечает уравнение вида (2.131).

Для монохроматической волны угловая частота со и амплитуда А не зависят от времени. Это значит, что монохроматическая волна безгранична в пространстве и бесконечна во времени, т.е. представляет собой идеализированную модель. Всякая реальная волна, как бы тщательно ни поддерживалось постоянство частоты и амплитуды, монохроматической не является. Реальная волна не длится бесконечно долго, а начинается и кончается в определенные моменты времени в определенном месте, и, следовательно, амплитуда такой волны есть функция времени и координаты этого места. Однако чем длиннее интервал времени, в течение которого поддерживаются постоянными амплитуда и частота колебаний, тем ближе к монохроматической данная волна. Часто в практике монохроматической волной называют достаточно большой отрезок волны, в пределах которого частота и амплитуда не изменяются, подобно тому, как изображают на рисунке отрезок синусоиды, и называют его синусоидой.

Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

Уравнение плоской волны

Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x . Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t : . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )

(5.2.2)

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x . Чтобы пройти путь x , необходимо время .

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.

, (5.2.3)

– это уравнение плоской волны.

Таким образом, x есть смещение любой из точек с координатой x в момент времени t . При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z .

В общем виде уравнение плоской волны записывается так:

Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны .

Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x . Волна, распространяющаяся в противоположном направлении, имеет вид:

.

Уравнение волны можно записать и в другом виде.

Введем волновое число , или в векторной форме:

, (5.2.5)

где – волновой вектор, – нормаль к волновой поверхности.

Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

. (5.2.6)

Уравнение сферической волны

Колебательный процесс, распространяющийся в среде в виде волны, фронт которой представляет собой плоскость , называется плоской звуковой волной . На практике плоская волна может образовываться источником, линейные размеры которого велики по сравнению с длинной излученной им волн, и если зона волнового поля находится на достаточно большом удалении от него. Но так обстоит дело в неограниченной среде. Если источник огражден каким-либо препятствием, то классический пример плоской волны, это – колебания, возбужденные жестким несгибаемым поршнем в длинной трубе (волноводе) с жесткими стенками, если диаметр поршня значительно меньше длины - излучаемых волн. Поверхность фронта в трубе из-за жестких стенок не меняется по мере распространения волны по волноводу(см. рис. 3.3). Потерями звуковой энергии на поглощение и рассеяние в воздушной среде пренебрегаем.

Если излучатель (поршень) совершает колебания по гармоническому закону с частотой
, а размеры поршня (диаметр волновода) значительно меньше длины звуковой волны, то давление, создаваемое около его поверхности,
. Очевидно, что на расстояниих давление будет
, где
– время пробега волны от излучателя до точкиx. Это выражение удобнее записать, как:
, где
- волновое число распространения волны. Произведение
- определяемый фазовый набег колебательного процесса в точке, удаленной на расстояниех от излучателя.

Подставляя полученное выражение в уравнение движения (3.1), проинтегрируем последнее относительно колебательной скорости:

(3.8)

Вообще для произвольного момента времени оказывается, что:

. (3.9)

Правая часть выражения (3.9) – характеристическое, волновое, или удельное акустическое сопротивление среды (импеданс). Само уравнение (3.), иногда, называется акустическим «законом Ома». Как следует из решения, полученное уравнение справедливо в поле плоской волны. Давление и колебательная скорость синфазны , что является следствием чисто активного сопротивления среды.

Пример: Максимальное давление в плоской волне
Па. Определить амплитуду смещения частиц воздуха по частоте?

Решение: Так как , тогда:

Из выражения (3.10) следует, что амплитуда звуковых волн очень мала, по крайней мере, в сравнении с размерами самих источников звука.

Помимо скалярного потенциала, давления и колебательной скорости звуковое поле характеризуется и энергетическими характеристиками, важнейшей из которых является интенсивность - вектор плотности потока энергии, переносимой волной за единицу времени. По определению
- есть результат произведения звукового давления на колебательную скорость.

При отсутствии потерь в среде плоская волна, теоретически, может распространяться без ослабления на сколь угодно большие расстояния, т.к. сохранение формы плоского фронта свидетельствует об отсутствии «расходимости» волны, а, значит, и об отсутствии ослабления. Иначе обстоит дело, если волна обладает искривленным фронтом. К подобным волнам относят, прежде всего, сферическую и цилиндрическую волны.

3.1.3. Модели волн с неплоским фронтом

У сферической волны поверхность равных фаз является сферой. Источником такой волны также является сфера, все точки которой колеблются с одинаковыми амплитудами и фазами, а центр остается неподвижен (см. рис. 3.4, а).

Сферическая волна описывается функцией, являющейся решением волнового уравнения в сферической системе координат, для потенциала волны, распространяющейся от источника:

. (3.11)

Действуя по аналогии с плоской волной, можно показать, что на расстояниях от источника звука значительно больше длины изучаемых волн:
. Это значит, что акустический «закон Ома» выполняется и в данном случае. В практических условиях сферические волны возбуждаются, преимущественно, компактными источниками произвольной формы, размеры которых значительно меньше длины возбуждаемых звуковых или ультразвуковых волн. Иными словами, «точечный» источник излучает, преимущественно, сферические волны. На больших расстояниях от источника или, как принято говорить, в «дальней» зоне сферическая волна применительно к ограниченным по размерам участкам волнового фронта ведет себя как плоская волна, или как говорят: «вырождается в плоскую волну». Требования к малости участка определяются не только частотой, но
- разностью расстояний между сравниваемыми точками. Отметим, что указанная функция
имеет особенность:
при
. Это вызывает определенные трудности при строгом решении дифракционных задач, связанных с излучением и рассеянием звука.

В свою очередь цилиндрические волны (поверхность волнового фронта - цилиндр) излучаются бесконечно длинным пульсирующим цилиндром (см. рис.3.4).

В дальней зоне выражение для функции потенциала такого источника асимптотически стремится к выражению:


. (3.12)

Можно показать, что и в этом случае выполняется соотношение
. Цилиндрические волны, как и сферические, в дальней зоневырождаются в плоские волны.

Ослабление упругих волн при распространении связано не только с изменением кривизны волнового фронта («расходимостью» волны), но и с наличием «затухания» т.е. ослабления звука. Формально наличие затухания в среде можно описать, представив волновое число комплексным
. Тогда, например, для плоской волны давления можно получить:Р(x , t ) = P макс
=
.

Видно, что вещественная часть комплексного волнового числа описывает пространственную бегущую волну, а мнимая часть характеризует ослабление волны по амплитуде. Поэтому величина  называется коэффициентом ослабления (затухания),  - величина размерная (Непер/м). Один «Непер» соответствует изменению амплитуды волны в «е» раз при перемещении волнового фронта на единицу длины. В общем случае ослабление определяется поглощением и рассеянием в среде:  =  погл +  расс. Указанные эффекты определяются разными причинами и могут рассматриваться отдельно.

В общем случае поглощение связано с необратимыми потерями звуковой энергии при ее превращении в тепло.

Рассеяние связано с переориентацией части энергии падающей волны на другие направления, не совпадающие с падающей волной.

> Сферические и плоские волны

Научитесь различать сферические и плоские волны . Читайте, какую волну называют плоской или сферической, источник, роль волнового фронта, характеристика.

Сферические волны возникают из точечного источника в сферическом узоре, а плоские – бесконечные параллельные плоскости, нормальные к вектору фазовой скорости.

Задача обучения

  • Вычислить источники сферических и плоских волновых узоров.

Основные пункты

  • Волны создают конструктивные и деструктивные помехи.
  • Сферические возникают из одного точечного источника в сферической форме.
  • Плоская вода – частотная, волновые фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой.
  • В реальности не выйдет получить идеальную плоскую волну, но многие приближаются к такому состоянию.

Термины

  • Деструктивные помехи – волны мешают друг другу, а точки не совпадают.
  • Конструктивные – волны мешают и точки расположены в идентичных фазах.
  • Волновой фронт – мнимая поверхность, простирающаяся сквозь осциллирующие точки в фазе среды.

Сферические волны

Какую волну называют сферической? Разработать метод по определению способа и места распространения волн удалось Кристиану Гюйгенсу. В 1678 году он выдвинул предположение, что каждая точка, с которой сталкивается световая помеха, превращается в источник сферической волны. Суммирование вторичных волн вычисляет вид в любом времени. Этот принцип показал, что при контакте волны создают деструктивные или конструктивные помехи.

Конструктивные формируются, если волны полностью пребывают в фазе друг друга, а финальная усиливается. В деструктивных волны не соответствуют по фазам и финальная просто сокращается. Волны возникают из одного точечного источника, поэтому формируются в сферическом узоре.

Если волны генерируются из точечного источника, то выступают сферическими

Этот принцип применяет закон преломления. Каждая точка на волне создает волны, мешающие друг другу конструктивно или деструктивно

Плоские волны

Теперь давайте поймем, какую волну называют плоской. Плоская отображает частотную волну, фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой, расположенной перпендикулярно вектору фазовой скорости. В реальности нельзя добыть истинную плоскую волну. Только плоская с бесконечной протяжностью сможет ей соответствовать. Правда, многие волны приближаются к такому состоянию. Например, антенна формирует поле, выступающее примерно плоским.

Плоские отображают бесконечное число волновых фронтов, нормальных к стороне распространения

Плоская волна - это волна, фронт которой представляет собой плоскость. Напомним, что фронт - это эквифазная поверхность, т.е. поверхность равных фаз.

Принимаем, что в точке О (рис. 5.1) находится точечный источник, плоскость Р перпендикулярна оси Z, точки М j и М 2 лежат в плоскости Р. Принимаем также, что источник О так далеко от плоскости Р, что OMj | | ОМ 2 . Это означает, что все точки в плоскости Р, являющейся фронтом волны, равноправны, т.е. при перемещении в плоскости Р не происходит изменения состояния процесса:

Рис. 5.1.

Разрешим уравнения Гельмгольца

относительно векторов поля и исследуем полученные решения.

В этом случае из шести уравнений остаются только два уравнения:

Плоские волны в вакууме

Решение дифференциальных уравнений (5.1) имеет вид

где корни характеристического уравнения

Переходя от комплексных векторов к их мгновенным значениям, получим

Первое слагаемое представляет собой прямую волну, а второе - обратную волну. Рассмотрим первое слагаемое уравнения (5.2). На рис. 5.2 в соответствии с этим уравнением показано распределение напряженности электрического поля в момент времени t и At. Точки 1 и 2 соответствуют максимумам напряженности электрического поля. Положение максимума сместилось за время At на расстояние Az:

Равенство значений функций обеспечивается равенством аргументов: ooAt = kAz. При этом получаем уравнение для фазовой скорости

Puc. 5.2. График изменения напряженности электрического поля

Для вакуума Уф =-, С ° = -j2= = 3 10 8 м/с.

W 8 оМ-о V E oMo

Это означает, что в вакууме скорость распространения электромагнитной волны равна скорости света. Рассмотрим второе слагаемое уравнения (5.2):

Оно дает Уф =-. Это соответствует волне, распространяющейся к источнику.

Определим расстояние X между точками поля с фазами, отличающимися на 360°. Это расстояние называется длиной волны. Поскольку

где к - волновое число (постоянная распространения), то

Длина волны в вакууме Х 0 = с / /, где с - скорость света.

Фазовая скорость и длина волны в остальных средах соответственно

Как следует из формулы для фазовой скорости, она не зависит от частоты электромагнитного поля, а значит, среда без потерь недисперсионная.

Установим связь между направлениями векторов электрического и магнитного полей. Начнем с уравнений Максвелла:

Заменяем векторные уравнения скалярными, т.е. приравниваем проекции векторов в последних уравнениях:


Учтем, что в системе (5.3)

тогда получим


Из условия (5.4) очевидно, что у плоских волн нет продольных составляющих, так как E z = О, Н 2 = 0. Составим скалярное произведение (Е, Я), выразив Е х и Е у из выражений (5.4):

Поскольку скалярное произведение векторов равно нулю, векторы Ё и Я в плоской волне перпендикулярны друг другу. Из-за того, что у них нет продольных составляющих, ? и Я перпендикулярны направлению распространения. Определим отношение амплитуд векторов электрического и магнитного полей.

Принимаем, что вектор? направлен вдоль оси х, соответственно Е у - 0,Н Х - 0.

Из уравнения (5.4) Е х =-Я Я у ~-Е х. Отсюда =-=,/- -Z, сое сор Н у сое V е

где Z - волновое сопротивление среды с макроскопическими параметрами е и р;

Z 0 - волновое сопротивление вакуума. С большой степенью точности эту величину можно считать волновым сопротивлением сухого воздуха.

Запишем выражения для мгновенных значений Я и? падающей волны, используя уравнение (5.2). В результате получим

аналогично

По мере продвижения падающей волны вдоль оси z амплитуды? и Я остаются неизменными, т.е. затухания волны не происходит, так как в диэлектрике нет токов проводимости и выделения энергии в виде теплоты.

На рис. 5.3, а изображены пространственные кривые, представляющие собой графики мгновенных значений Я и?. Эти графики построены по полученным уравнениям для момента времени cot = 0. Для более позднего момента времени, например для cot + |/ п = п/2, аналогичные кривые изображены на рис. 5.3, б.


Рис. 5.3.

а - при a)t= 0; б - при u>t= п/2

Как видно на рис. 5.3, а и б, вектор Е при движении волны остается направленным вдоль оси х, а вектор Я - вдоль оси у, сдвига по фазе между Я и? нет.

Вектор Пойнтинга падающей волны направлен вдоль оси z. Его модуль изменяется по закону П = C 2 Z sin 2 ^cot + --zj. Поскольку

sin 2a = (1 - cos2a)/2, to 1-cosf 2cot+--z ] , т.е. вектор

2 L V v)_

Пойнтинга имеет постоянную составляющую C 2 Z /2 и переменную, изменяющуюся во времени с двойной угловой частотой.

На основе анализа решения волновых уравнений можно сделать следующие выводы.

  • 1. В вакууме плоские волны распространяются со скоростью света, в остальных средах скорость меньше в ^/e,.p r раз.
  • 2. Векторы электрического и магнитного полей не имеют продольных составляющих и перпендикулярны друг другу.
  • 3. Отношение амплитуд электрического и магнитного полей равно волновому сопротивлению среды, в которой происходит распространение электромагнитных волн.